Relative perturbation theory for hyperbolic eigenvalue problem
نویسندگان
چکیده
منابع مشابه
Relative Perturbation Theory: (I) Eigenvalue Variations
In this paper, we consider how eigenvalues of a matrix A change when it is perturbed to e A = D 1AD2 and how singular values of a (nonsquare) matrix B change when it is perturbed to e B = D 1BD2, where D1 and D2 are assumed to be close to unitary matrices of suitable dimensions. We have been able to generalize many well-known perturbation theorems, including Ho man-Wielandt theorem and Weyl-Lid...
متن کاملThe Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem
The Unsymmetric Eigenvalue Problem Just as the problem of solving a system of linear equations Ax = b can be sensitive to perturbations in the data, the problem of computing the eigenvalues of a matrix can also be sensitive to perturbations in the matrix. We will now obtain some results concerning the extent of this sensitivity. Suppose that A is obtained by perturbing a diagonal matrix D by a ...
متن کاملOn Adiabatic Perturbation Theory for the Energy Eigenvalue Problem
The most customary method to treat quantum-mechanical energy-eigenvalue problems that cannot be solved exactly is the well-known RayleighSchrSdinger perturbation theory. Sometimes, however, it turns out to be more convenient to deal with t ime-independent problems by means of a timedependent formalism, and particularly so when the Hamiltonian of the system can be expressed in terms of quantized...
متن کاملRelative Perturbation Theory: I. Eigenvalue and Singular Value Variations∗
The classical perturbation theory for Hermitian matrix eigenvalue and singular value problems provides bounds on the absolute differences between approximate eigenvalues (singular values) and the true eigenvalues (singular values) of a matrix. These bounds may be bad news for small eigenvalues (singular values), which thereby suffer worse relative uncertainty than large ones. However, there are...
متن کاملPerturbation Theory for HomogeneousPolynomial Eigenvalue
We consider polynomial eigenvalue problems P(A; ;)x = 0 in which the matrix polynomial is homogeneous in the eigenvalue (;) 2 C 2. In this framework innnite eigenvalues are on the same footing as nite eigenvalues. We view the problem in projective spaces to avoid normalization of the eigenpairs. We show that a polynomial eigenvalue problem is well-posed when its eigenvalues are simple. We deene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2000
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(99)00126-3